当前位置: 技术 > 真空压铸
真空技术--在压铸工艺的应用
发布时间:2012年06月04日 23:00

瑞士方达瑞 (Fondarex SA) 驻亚洲技术销售经理 秦耘 (Qin Yun)
    瑞士方达瑞真空应用技术经理 阎爱米尼哥 (Jan Emmenegger)

一、前言

压铸作为有色金属铸造业的一种革命,大大的提高了铸件生产的生产率,成型率,降低了生产成本,也为铸件在各行各业的应用奠定广泛的基础。现在,即使那些对压铸一无所知的人们也无时无刻不在日常生活中得益于压铸技术的应用。

然而,压铸工艺从它的诞生起就带有严重的先天不足---型腔内的气体影响。与传统的砂型或金属固定模重力铸造相比,压铸在浇口的高速喷射比重力自然流入的高温液态金属有着更好的充型效果,但也正是由于高温高压高速的金属喷射,使金属与型腔内的空气和热金属与型腔内残留润滑剂所产生的烟气有更大可能的结合。因此,传统压铸件的金属结构远远不如砂型或固定金属模的铸造件是一个不争的事实。
为改善压铸的这种致命缺陷,业内人士早在大半个世纪前开始就对其工艺进行了不断的改进,诸如在模具上开排气槽,尽量采用小压室的压射,低速压射,以及现代压铸机采用的多段多速压射技术。但真正堪称革命性的改革是1956年瑞士方达瑞第一次将真空技术引用到压铸生产工艺中。成立于1942年的瑞士方达瑞起先也是一个压铸工厂,随着成功的将真空应用到压铸工艺中,方达瑞逐渐将研究和发展方向完全转移到压铸真空应用当中来,历经60余年的不断发展和完善,使方达瑞的真空技术和应用日臻完善。作为这个行业的先驱和领航者,方达瑞始终走在压铸真空技术和应用的最前端。

二、为什么要在压铸工艺中使用真空技术

在压铸时存在于行腔中的气体由空气和压射时产生的烟气组成。我们来看看无排气传统压铸和采用方达瑞真空系统的型腔内气体压力图。

在传统压铸中,由於在注流口处的喷射效应,50%90%的金属熔液将与型腔内的空气和烟气充分接触,气压在最后充型点将达到3000毫巴以上至4000毫巴;在真空压铸中,最后的气压只有几百至100毫巴以下,只有极少的空气和烟气与金属接触。滞留在型腔内的空气和烟气越多,就越难形成无缺陷的金属结构铸件。所以排气就成为决定压铸件质量的重要因素。这就不难理解真空排气对压铸工艺的重要之处了。

    有些人认为真空作为一种有效的排气手段是可以由其它方式替代的,诸如多段压射,模具上开排气槽或采用冷却块集中排气等等。果真如此吗?很多压铸机厂商的许诺---他们的压铸机本身就可以根本解决排气问题,比如多段多速可调节压射系统应用。不可否认的是,多段多速压射将解决一些在压室内由于金属流动所产生的裹气问题,剩下的即是寄希望于理想的金属流动将气体由内向外全部排除出型腔。但事实上,压射的喷射效应不可能在瞬间转化成理想的金属流动,无法保证金属流动于气体之后,推动气体排除型腔。气体与金属的充分结合也无可避免,型腔内的气压上升也是事实。用新压铸机解决不了排气问题,最后联手与方达瑞合作采用真空排气的情况,在欧洲和亚洲客户中屡见不鲜。印度市场的进入就是方达瑞与布勒(Buhler)合作,通过帮助Sundaram Clayton解决Volvo的汽车备件气孔率问题而实现的。

传统的积渣包和排气槽设计---被动排气的过程就是金属与气体紧密接触的过程,随着排气的进行,型腔内的气体压力会逐渐增高,更加大了气孔的形成的可能。部分气体能从气槽中排出,说明型腔内的气压大于大气压力,而最后充型点的压力将是最终型腔气压的极限点。另外众所周知的问题是,被动排气还极可能会造成金属飞料,降低压射效率,污染环境并带来安全隐患。

   
无真空被动排气冷却块---由于最顶端的间隙通常设计成0.2毫米,以增大金属冷凝的机会,尽管底部被设计为0.8毫米或更大,这个最窄处截面也就成为排气的瓶颈口,所以该形式排气能力远远小于预想中的情况。另外波浪板型的设计中,忽略金属和气体流动特性的组合优化,也会给排气和金属冷凝带来困难,金属充不满或飞料就难以避免。更有由此带来的投影面积增大的问题。

在这里要说明的是,被动排气的种种形式确实能多多少少排出部分型腔气体,但并未从根本上解决排气问题,因为此时的型腔气压会是大于大气压的正压,与真空压铸的小于大气压的负压相比,效果是差别很大的。

三、何时需要采用真空排气

采不采用真空排气,完全取决于对铸件质量要求的程度。对于那些低端产品而言,由于利润低薄,质量要求不高,真空排气带来的益处并不彰显;而对于其它高端产品而言,1%的成品率的提高就可能带来丰厚的回报,就能在极短时间内收回真空系统的投资,创造更大的效益。以德国宝马6缸发动机缸体为例,1%成品率的增加意味着每天多15万人民币的收益,所以其压铸生产100%采用真空工艺。

在下列情况下,厂商应考虑采取真空技术以提高压铸质量:
型腔充注不完全
在下道工序出现空气和气体气孔率
气孔率造成抗拉强度减弱
铸件内部组织松弛,气密性差
焊接性差或无法焊接
在喷塑或电镀或涂粉等工艺後铸件表面出现气泡

充型不好是因为残留在型腔内的气体占据了充型空间,产生表面缺陷;当在下道工序,如加工或打磨时暴露出表层下的气孔时,将造成二次废品率;气孔还会造成金属结构不密实,铸件强度达不到要求;由气孔率产生的气密性问题将会带来内部气体或液体的泄漏;焊接处如果有气孔将使焊接失效;铸件表层的气孔还将使喷塑或电镀或涂粉脱层。

四、真空系统的选择

众所周知的真空系统是由真空机和排气元件组成。压铸真空发展时至今日,所谓的真空系统林林总总,技术诀窍各具所长,投资成本也相差很大,但压铸商真正所关心的哪种技术更适合于自己的压铸工艺,哪种系统能产生更大的效益,一句话性价比高的才是最终的选择。

从真空机来讲,大致分为三类:

1、由继电器和手动开关控制真空机,多为国产真空泵。价格低廉,操作简单,可由计时器关闭真空,但不具备工艺参数控制要求,用于低端质量要求产品排气,与冷却块匹配,无兼容性。

2、由PLC控制,国产真空泵或进口真空泵。可与单芯阀或冷却块匹配,由于排气元件的限制,无法测量真实的型腔真空度,由计时器或行程开关信号关闭真空,无法控制纯机械真空阀。

3、由PLC加触摸屏控制,参数控制,故障显示,即时型腔真空度曲线和真空值显示,工艺菜单存储,多语言界面;可兼容机械阀,时间/路径控制的单芯阀以及冷却块。进口真空泵及所有控制元件。

从真空排气元件分,为对应的以下三类:
1、冷却块
2、由时间或路径控制关闭的单芯真空阀
3、由金属流动能机械关闭真空的双芯真空阀

从真空技术角度看以上分类的对应组合:
1、真空冷却块排气:所谓的形式真空排气,用于低质量排气要求
   优点:
启动真空排除空气和烟气直至金属充满型腔
不同数目的冷却块可以被合并入一个模具(如一模多件)
造价相对低廉
维护简单容易
可与最简单的真空机匹配
   缺点:
真空停止由冷却块中金属凝固来实现
真空排气能力非常低
所占用的投影面积相对过大
有飞料的危险
无法精确的控制排气量
金属容易粘结在表面
重复使用精确度无法保证
通道污染度高(与采用的脱模剂有关联)
真空应用需要诀窍

2、由液压或气动驱动的,依靠路径/时间提前关阀的真空排气:所谓的半过程真空排气,用于一般质量排气要求
   优点:
排气能力高
节省重熔成本
投影面积占用相对较小
集渣包较小
   缺点:
只可达到很小的真空度,因为真空在充型过程前很早时就已结束,模外的空气由于压差将渗入型腔,同时高温金属流将与不洁表面接触而产生千倍以上的烟气,因此不是所有的空气和烟气被排除
一旦压射外形改变,用于关闭真空阀的计时器或极限开关必须加以调整
一次性投资成本较高
需要维护
需要备件
需要与之匹配的真空机

3、由机械阀靠金属动能关阀的真空排气:所谓的全过程真空排气,用于高质量真空排气要求
   优点:
真空阀将一直开启至压铸过程结束,低真空度将得以获得
排气能力高
节省重熔成本
投影面积占用相对较小
可省却集渣包
真空阀将由合金动能关闭,压射外形的改变对真空阀的功能无影响